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Abstract

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with high prob-

ability of misdiagnosis and significant unmet medical needs that affects as many as 2.5 million people in the

U.S. and causes enormous burden for patients, their caregivers, the healthcare system and society. Between

84 to 91 percent of ME/CFS patients are not yet diagnosed [6, 19], and at least one-quarter of ME/CFS

patients are house- or bedbound at some point in their lives [12, 13]. The impact of ME/CFS to the U.S.

economy, is about $17 to $24 billion in medical bills and lost income from lost household and labor force

productivity per year [7, 13].

Current widely used diagnosis methods of ME/CFS and other diseases with similar clinical symptoms

like Long COVID [6, 21] are highly dependent on patients’ self reporting [4, 5] and standardized survey,

which are not optimal for medical diagnosis. In a joint study with The Bateman Horne Center (BHC) 1, we

designed and developed a system prototype that was able to stably collect terabytes of inertial measurement

unit (IMU) time-series data, and analyzed multiple candidate parameters derived from them that could be

used as reliable biomarkers for ME/CFS and other diseases with similar clinical symptoms.

Utilizing our system prototype, MetaProcessor, we conducted grouped t-tests on data collected from the

EndoPAT study group (55 recruited, 51 participated, 30 ME/CFS, 15 Long COVID, 6 healthy control) to

evaluate the predictive power of Upright Position Time (UpTime), Hours of Upright Activity (HUA), and

Steps/Day. Through statistical analysis, we were able to assert the following for ME/CFS versus healthy

control: 1. UpTime yielded a low p-value of 0.00004, indicating a significant difference between the groups

and demonstrating its potential as a reliable measure for differentiating ME/CFS from healthy control

populations. 2. HUA had a p-value of less than 0.00004, suggesting it could also serve as a useful measure

for distinguishing ME/CFS from healthy control groups. 3. Steps/Day, x-axis and y-axis, had p-values of

0.01059 and 0.08665, respectively, indicating that step count may be relevant for differentiating ME/CFS

individuals from healthy controls, but step count alone may not be sufficient to reliably distinguish between

these groups. In a linear regression analysis, we found a moderately positive correlation between UpTime

and HUA with r2 = 0.68. Overall, we can confidently conclude that UpTime is a superior overall predictor

due to its objective nature and the lowest p-values observed across all groups.

1BHC is a non-profit research clinic specialized in the diagnosis and treatment of ME/CFS, fibromyalgia, post-viral syn-
dromes, and related comorbidities.
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1 Introduction

In this chapter, we will briefly discuss the motivation of our work, ME/CFS and Long COVID’s symptoms

and impact, definition of keywords, and discussion of prior studies.

1.1 Motivation

ME/CFS, a disease for which the cause has yet to be found, affects an estimated 836,000 to 2,500,000

people in the U.S. [7, 13]. About 90% of people with ME/CFS has not been diagnosed [7, 13]. As a long-term

illness, it affects patients’ daily activities in various ways causing inconveniences and dramatically lowering

their quality of life. Due to ME/CFS’s large patient population, affecting people working in various fields,

it costs the U.S. economy about $17 to $24 billion in medical bills and lost income from lost household and

labor force productivity per year [7, 13].

Biomarkers, is a contraction of “biological marker”, refers to a wide range of medical signs that can be

objectively measured and reliably reproduced from outside the patient. These medical signs are distinguished

from medical symptoms, which are restricted to the indications of health or illness that patients perceive

themselves [20]. A digital biomarker is a type of biomarker that is measured using digital tools, such as

smartphones, wearable devices, and other digital sensors. Digital biomarkers can be obtained in a non-

invasive and continuous manner, providing a wealth of data on an individual’s health status and disease

progression.

Long COVID, or Post-COVID Conditions, is a group of health conditions that might display symptoms on

some people who have been infected with SARS-CoV-2 or its variants. Studies reported the symptomatology

between ME/CFS and Long COVID shares many overlaps [6, 21], so we hypothesized the digital biomarker(s)

used in ME/CFS study may show similar results in diagnosing and measuring the severity of Long COVID,

and we decided to include Long COVID in our study.

Currently, diagnosis and treatment are challenging because there are no specific biomarkers and tests for

ME/CFS. Widely used diagnosis methods of the disease (and similar symptoms in Long COVID patients

[6, 21]) are not based on a statistically proven biomarker, but rather, they are based on patients’ self-

description of symptoms, questionnaires, and clinical observations [4]. Similarly, in a recent CDC report,

their suggested diagnosis method is also largely based on patients’ self reporting [5]. Thus, well-defined

and reliable biomarkers are needed for a more objective diagnosis and to more accurately measure clinically

relevant and meaningful outcomes of treatment for ME/CFS.

1



As above mentioned, ME/CFS has a large patient population, relatively high misdiagnosis rate and low

successful diagnosis ratio. It’s a non-trivial problem with huge economical impact of which we have limited

understanding. With the COVID-19 pandemic still raging, there might be an increase in Long COVID case

numbers as time passes. However, FDA has not approved any physical or pharmaceutical treatment for

ME/CFS due to the lack of validated efficacy endpoints [4]. This lack prohibits drug manufactures showing

evidence to FDA of the new treatment’s effectiveness. Thus, in this study, to address the above mentioned

issues, we will present a system prototype that provides a comprehensive data pipeline for collecting raw

IMU data from clinical side to investigator side and analysis of multiple relevant digital biomarkers.

1.2 Background

Although the medical community still has a relatively limited understanding of ME/CFS, its has recently

attracted more attention and research, leading to a consensus of the disease’s core symptoms:

1. fatigue in response to physical exertion and post-exertional malaise (PEM),

2. unrefreshing sleep,

3. cognitive impairment, and

4. orthostatic intolerance (OI) [4].

The symptoms of individuals with ME/CFS vary greatly in both severity and type, with many mani-

festations beyond the core symptoms [17]. This variability presents a significant challenge in assessing the

effectiveness of treatments, resulting in the disease’s poor test-retest reliability [14], thus, high misdiagnosis

rate.

In a pilot study, investigators found there might be connection between ME/CFS severity and orthostatic

intolerance level [8, 15]. OI refers to onset of symptoms which occur when standing upright (or to be

considered in a upright posture). These symptoms can be alleviated by reclining [15]. Symptoms include

dizziness, headaches, weakness, and nausea if they stay in prolonged upright posture [15].

Prior studies at the BHC and clinical experience with over 1,000 ME/CFS patients have indicated that

patients’ disease severity and degree of physical impairment reflected by the level of OI can be gauged by

Hours of Upright Activity (HUA, Figure 1.1) which is defined as time spent with feet on the floor over a

24-hour period. Researchers at BHC observed severely ill ME/CFS patients reported 0 to 4 hours with

their feet on the floor while moderately ill patients reported having their feet on the floor for 5 to 8 hours.

Patients with less than 4 HUA had significantly worse orthostatic intolerance symptoms (p < 0.001) and

significantly greater interference with walking and standing (p < 0.001) compared to age and sex matched

2



Figure 1.1: Definition of “upright activity”: postures where the angle between study target’s calf and an
imaginary vertical line tangent to study target’s kneecap is less than a certain critical point (Palombo [15],
Figure 2.1).

healthy controls [9]. Although promising, HUA is based on pateients’ self-report and, thus, may not be seen

as reliable. These observations inspired us to develop an accurate and objective method to quantify impaired

physical function by measuring upright activity, which we will refer to as Upright Position Time or UpTime

(Figure 1.2) [15, 16].

UpTime is a good candidate digital biomarker in representing patients’ orthostatic intolerance level with

computation cost feasible for mainstream consumer level computers. The calculation involves several steps.

First, raw inertial measurement unit (IMU) data is collected from the lower leg of subject participants. The

following steps include pre-processing the raw IMU (merging raw output from sensors, unit conversions,

etc.), filtering the data to remove high-frequency noise, and using a state-space Kalman filter to estimate the

orientation of the leg in 3D space. Once the orientation estimate has been obtained, the program determines

whether the leg is in an upright position or not. This is done by calculating the roll and pitch angles from

the orientation estimate and checking whether the roll angle is within a critical range. The roll and pitch

angles are calculated using quaternions, which is a way of representing rotations in 3D space. The quaternion

representation of a rotation can be converted to Euler angles, which are commonly used to represent rotations

in 3D graphics and robotics. If the roll angle is less than the critical angle, the leg is considered to be in

3



Figure 1.2: UpTime definition: The percentage of time a person’s lower leg angle is less than a certain
critical angle (39 degress in our study) over a pre-defined period of time (i.e., a day). Image reproduced with
permission from Turner Palombo.

an upright position. Then, the upright percentage is then calculated by dividing the total time spent in an

upright position by the total recording time [15]. 1

To collect UpTime, we used external hardware to assist us. In a pilot study, researchers used Shimmer

sensors to collect raw IMU data and then to extract UpTime percentage. In their study protocol, they

required participants to wear a Shimmer IMU on lateral side of each lower leg, approximately two inches

above the malleolus. In our study, we decided to use MbientLab’s MetaMotionS (MMS), and put only 1

MMS on the outer side of patients’ lower leg. (Analysis of the data from the pilot study indicated that there

was no significant difference in UpTime values calculated from a single as opposed to both legs.) Figure 1.3

details the differences of our UpTime extraction workflow for the current study.

From the pilot study, investigators used Shimmer sensors for the collection of study participants’ move-

ment data, and they found the battery life of Shimmer sensors does not meet their expectation with signifi-

cantly larger form factor and heavier weight comparing with MMS while only last around 3 days and MMS

IMUs last around 7 days. Also, MbientLab provides comprehensive programming interfaces including low

level C++ libraries to interact with the hardware and different bindings in other programming languages

(Python, JavaScript, Swift) for all MetaWear series sensors, providing us more flexibility with stronger

firmware customizability.

1A more comprehensive study about UpTime, including mathematical modeling and choice of critical angle, can be found
in Turner Palombo’s master’s thesis.
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Figure 1.3: Left: UpTime calculation workflow with Shimmer (Palombo [15], Figure 3.5, Appendix E). Right:
Modified UpTime calculation workflow with MMS (Appendix A).

1.3 Study Design

The initial study undertaken by Turner Palombo showed a correlation between UpTime and ME/CFS

disease severity and verified the UpTime algorithm accuracy [15]. However, this result is preliminary as the

study that showed the correlation only had 15 subjects. Therefore, we collaborated with the BHC on a

larger study with 51 participants which has a ME/CFS cohort, a Long COVID cohort, and a healthy control

cohort. We collected 1 week worth of accelerometer and gyroscope data on each of the study participants.

In addition standardized questionnaires/surveys were collected including RAND36, OISA, and OIDAS.

Medical professionals at the BHC are trained to use our custom system, MetaProcessor, which will be

discussed in the following chapter, and they ensure the MMS device is placed correctly for each participant.

In Figure 1.4, the “F” (forward) corresponds to the x-axis of the Bosch BMI160 accelerometer embedded

in the MMS, and “V” (vertical) corresponds to the y-axis. If worn correctly, x-axis would point to forward

walking direction, y-axis would point towards wearer’s knee, z-axis would point left towards wearer’s left

ankle.

Each MMS device was placed in a soft, elastic band, then further secured on study participants’ right

5



Figure 1.4: Left: one of our MMS in use, f means “forward”, v means “vertical”, during deployment, MMS
devices are worn on study participants’ lower right leg, on the outer side of ankle, with the label facing
outward. Right: official Bosch BMI160 6-axis IMU orientation labeling from MbientLab, image source:
https://mbientlab.com/tutorials/Orientation.html.

ankle, on the outside of their leg. Study participants were instructed not to take off the MMS device anytime

unless they are showering or bathing. When showering or bathing, the participant needs to place the sensor

in an orientation with the y-axis pointing upward if they were showering (so that the UpTime Algorithm

would record “upright”) or with the y-axis pointing horizontally if they were bathing (so that the UpTime

Algorithm would record “not upright”). Before they leave the BHC, they are given a postage paid envelope

to mail back the MMS at end of the data collection period (at least 7 continuous days).

In the following chapters of this thesis, we will detail:

1. our custom system, MetaProcessor, it’s design, usage, and analytical data collected from the extended

usage by The Bateman Horne Center,

2. multiple methods we used to analyze the data collected by MetaProcessor and results,

3. discussions of results,

4. finally, comments about the value of MetaProcessor and results of our study, and recommend directions

for possible future work(s) in related fields.
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2 System and Methods

In this chapter, we will cover our custom data collection system/tool, MetaProcessor, its design, choices

made when designing the components with benchmarks, its usage, and analytical data collected from the

extended usage by the BHC. After introducing MetaProcessor, we will further dig into the data collected

using MetaProcessor, detailing the methodologies and possible contributions made to related fields.

2.1 System

The fundamental goal of this system is to reliably collect raw IMU data from MetaWear series sensors, se-

curely transmit them to a intermediate location that’s easily accessible for investigators, and computationally

feasible for consumer electronics to extract relevant features (UpTime and other possible digital-biomarkers).

We designed the whole system and MetaProcessor as a collection of tools that is understandable and usable

by people without computer science background like medical professionals.

The system architecture overview is shown in Figure 2.1.

2.1.1 Hardware

The hardware used in our study (for data collection) includes: Raspberry Pi 3A units, Raspberry Pi 4B

units, MbientLab MetaMotionS IMUs, and an Apple iPhone 7.

2.1.1.1 Requirement Analysis

When designing a data collection system, the first step is to analyze the requirements for the hardware

components that will be used.

Raspberry Pi is a popular single-board computer that is widely used in the industry and the education

sector. We selected the Raspberry Pi 3A and Raspberry Pi 4B models based on their processing power,

memory, and cost-effectiveness. The Raspberry Pi 3A is a lower-end model, while the Raspberry Pi 4B is a

more powerful model. The choice of which model to use depended on the specific requirements of the data

collection task while both models are only meant to be used as an intermediate tool for downloading the

data from the IMUs with some minimal sensor fusion tasks then upload the data to a cloud service provider.

The MbientLab MetaMotionS (MMS) is an IMU sensor that is specifically designed for wearable ap-

plications. It features a 6-axis sensor system that includes an accelerometer, gyroscope, and other sensors

like magnetometer and ambient light sensors. The MMS is small, lightweight, and has a low power con-

sumption, making it ideal for long-term wearables. We chose the MMS for our study due to its accuracy,

7



Figure 2.1: Overall system architecture. Study participants (SP) goes to research clinic, clinicians set up
MMS using MetaBase, after SP mailed back MMS to clinic, clinicians download data from MMS, and the
CLI compresses the data and send to object store, then investigators can perform analysis on collected data.
Note: It is preferred to have the CLI running in a tmux session, so that investigators can use Tailscale Tunnel
to remotely access tty session.
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reliability, and ease of use. Also mentioned in Chapter 1, investigators were using Shimmer sensors before

the start of our study. Their feedback was also taken into consideration: they found the battery life ( 3 days)

of Shimmer sensors did not meet their expectation even with significantly larger form factor and heavier

weight comparing with the MMS. In logging mode, the MMS can last approximately 7 days. Furthermore,

MbientLab provides comprehensive programming interfaces including low level C++ libraries to interact

with the hardware and different bindings in other programming languages (Python, JavaScript, Swift) for

all MetaWear series sensors, providing us more flexibility with stronger firmware customizability.

The MMS device is configured with a smartphone. We chose to use an iPhone 7 in our study because we

were planning to develop a phone application for MetaWear and the core developer was only familiar with

app development using Swift. However, it’s important to note that any other smartphone with Bluetooth

Low Energy support could be used, if it is supported by MbientLab’s MetaWear app 1. Thus, the choice of

using an iPhone 7 was primarily driven by our development team’s familiarity with Swift and the availability

of the required hardware.

2.1.1.2 System Configuration Analysis

When configuring the MMS sensors for our study, we needed to consider the sample rate, range settings,

and other parameters that would affect the quality and accuracy of the data. Previous research indicates that

human motion is confined to ultra-low frequencies, specifically those below 10 Hz [11], to prevent aliasing,

our signal required a sample rate of at least twice this limit, or 20 Hz [1]. Nevertheless, gathering data at a

higher sample rate than the minimum requirement would enhance filter performance [15]. In the preliminary

study led by Turner Palombo, they were using the lowest sample rate supported by the Shimmer sensors

(30Hz), and considering we will need sampling rate to be at least 20Hz, we decided to use the intermediate

25Hz. The Bosch BMI160 chip embedded in MMS, supports wide ranges of sampling rate and resolution,

considering the nature of human and experience gained from previous studies, the accelerometer was set to

an output range of ± 8 g, and the gyroscope was set to an output range of ± 1000 deg/sec.

To configure the MMS device for data collection, we utilized the MetaBase application, which is a powerful

tool for configuring and managing various MbientLab devices. The MetaBase app is available for both iOS

and Android devices, providing a wide range of compatibility options for users. To ensure consistency and

accuracy in our data collection process, we chose to use an iPhone 7 for our configuration purposes. To begin

the configuration process, we first instructed the Bateman Horne Center staff to reset the MMS device to its

default settings. This was necessary to ensure that any previous configurations or data were cleared from the

device before we began our data collection process. Once the device had been reset, we then instructed the

1GitHub: https://github.com/mbientlab/metawear-swift-combine-sdk.
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staff to enable logging on the device, using the specific settings outlined in Table 2.1. These settings were

carefully selected to ensure that we captured all relevant data points and minimized the potential for errors

or discrepancies in our data. Finally, we instructed the staff to disable streaming on the device before it was

given to study participants. This was done to prevent any potential interference or disruptions in the data

collection process, as streaming can drain out the battery very quickly and an additional device is required

to view the streaming log.

Features Settings
Accelerometer Enabled: 25Hz, ± 8 g
Ambient Light Disabled
Gyroscope Enabled: 25Hz, ± 1000 deg/sec
Magnetometer Disabled
Pressure Disabled
Temperature Disabled

Table 2.1: MetaBase settings.

After the study participants had completed their data collection using the MMS device, they mailed

the device back to BHC staff for further processing and analysis. To ensure that the collected data was

accurate and complete, the staff utilized our custom tool called the MetaProcessor, which allowed them to

seamlessly download and upload the data with attached metadata using only one command: mp metawear

download, running on a Raspberry Pi 3 B+ we deployed at the BHC. The MetaProcessor is a versatile

and user-friendly feature that is specifically designed to streamline the data processing and analysis process,

making it easier for researchers and scientists to manage large amounts of data quickly and efficiently. With

the MetaProcessor, the staff at the Bateman Horne Center were able to download the data collected by the

MMS device directly onto their computer systems, where they could then analyze and process the data using

a variety of different tools and software applications (detailed information in Section 2.1.2). In addition to

the data itself, the MetaProcessor also allowed the staff to attach metadata to the collected data, providing

important context and information about each data point. This metadata could include a wide range of

different information, such as the date and time of the data collection, and any relevant notes or observations

about the data itself. Overall, the use of the MetaProcessor was a critical component of the data collection

and analysis process for The Bateman Horne Center staff, allowing them to efficiently manage and process

large amounts of data with ease and accuracy.

During the early stages of development, specifically when the MMS firmware version was less than 1.70.0,

we encountered a major hurdle in our data collection process. The issue was that serial download was not

yet available, which meant that we had to solely rely on Bluetooth LE for data transfer. As a result, our

data collection process was severely impacted, with an average download time of approximately 24.85 hours,
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based on a sample size of 20. This was due to the unpredictable nature of environmental radio disturbance,

which caused download times to range from 17.53 hours to 40.18 hours per study participant. However,

after we made the decision to switch to a updated firmware that had serial data transmission capability,

we were able to significantly improve our data collection process. This was evidenced by the decrease in

download time, which dropped down to 1.77 hours, based on a sample size of over 50. Furthermore, the

range of download times also became much more manageable, ranging from 0.87 hours to 2.91 hours, with

the exception of download sessions that encountered errors. As shown in Table 2.2, it’s clear that this switch

to the updated firmware with serial data transmission capability was a crucial step in optimizing our data

collection process, and has allowed us to collect data in a more efficient and reliable manner.

Connection Type Average Slowest Fastest
Bluetooth LE 24.85 hours (n = 20) 40.18 hours 17.51 hours
Serial 1.77 hours (n > 50) 2.91 hours 0.87 hours

Table 2.2: MMS data download speed comparison on different firmwares, switching from Bluetooth LE only
firmware to serial enabled firmware resulted in 14.04x download speed increase.

During the initial stages of the development process, our team encountered several issues with the Rasp-

berry Pis that we had deployed. These issues were identified through the monitoring platform Sentry.io, as

well as reports from BHC staff members. To ensure that we could address these issues without the need for

unnecessary travel and to facilitate faster project iteration, we leveraged Tailscale - a point-to-point VPN

solution that comes with robust encryption and is supported by the open source WireGuard protocol. By

using Tailscale Access Control, we were able to establish secure shell connections to the deployed Raspberry

Pis, complete with two-factor authentication. This allowed us to perform necessary maintenance tasks re-

motely, while ensuring that data security was maintained at all times. A example of a possible usage of

Tailscale Access Control List is presented in Figure 2.2.

2.1.1.3 Error Rate Analysis

Ensuring the stability of a data collection system is crucial for the accuracy and reliability of collected

data (results are in Table 2.3). In our study, we evaluated the error rates of using the legacy method versus

our custom data collection tool, MetaProcessor. The legacy method involves a human operator who manually

controls the MetaBase app to start the data download process to a mobile device and then transfers the data

to a dedicated storage location. On the other hand, MetaProcessor automates the data collection process

and securely transmits the raw IMU data from MbientLab MetaMotionS sensors to an intermediate location.

Our error rate analysis revealed that using MetaProcessor resulted in significantly higher reliability

compared to the legacy method. Specifically, we were able to achieve 5x reliability by using MetaProcessor,
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1 {

2 "groups": {

3 "group:investigator": ["yifei.sun@utah.edu"]

4 },

5 "tagOwners": {

6 "tag:testing": ["group:investigator"],

7 "tag:production": ["group:investigator"]

8 },

9 "acls": [

10 { "action": "accept", "src": ["group:investigator"], "dst": ["*:*"] }

11 ],

12 "tests": [

13 {

14 "src": "group:investigator",

15 "accept": ["tag:testing:22", "tag:production:22"]

16 }

17 ],

18 "ssh": [

19 {

20 "action": "accept",

21 "src": ["group:investigator"],

22 "dst": ["autogroup:self", "tag:testing", "tag:production"],

23 "users": ["autogroup:nonroot", "root"]

24 },

25 {

26 "action": "check",

27 "src": ["autogroup:members"],

28 "dst": ["autogroup:self"],

29 "users": ["autogroup:nonroot", "root"]

30 }

31 ]

32 }

Figure 2.2: Example Tailscale ACL that mandates 2-factor authentication for SSH connections.

with an overall error rate of only 0.58%, compared to a 10% error rate for the legacy method. We collected

172 sessions using MetaProcessor, covering over 1,200 days worth of motion data, while we collected 20

sessions using the legacy method.

Although there were some instances of human error in using MetaProcessor (resulting in a 1.16% error

rate), the overall error rate is expected to be below 1% for longer-term usages. This is a significant improve-

ment from the legacy method, where human error was not a concern but the system error rate was much

higher. Based on this analysis, we can conclude that MetaProcessor is a more reliable and efficient data

collection system than the legacy method.

Data Collection Method System Error Human Error Total
Legacy (n = 20) 2 (10%) 0 (0%) 2 (10%)
MetaProcessor (n = 172) 1 (0.58%) 2 (1.16%) 3 (1.74%)

Table 2.3: Error rate comparison: legacy method (2022-02-15 to 2022-04-25) v.s. MetaProcessor (2022-04-11
to 2023-03-07). We were able to achieve 5x reliability by using MetaProcessor comparing with using legacy
method, and we expect the overall error rate to be below 1% for longer term usages.
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2.1.2 Software: MetaProcessor

MetaProcessor 2 is a collection of tools built on top of MbientLab’s MetaWear C++ and Python library,

it provides a command line interface (CLI) with features to:

1. easy to use interactive CLI,

2. connect to MetaWear sensors and perform actions: download, reset, and other supported hardware

level interactions via serial or Bluetooth LE connections,

3. manipulate data downloaded from MetaWear sensors: format conversion, sensor fusion, and compres-

sion,

4. manipulate dataframes generated from sensor fusion: time zone conversion, time stamp alignment,

data interpolation,

5. calculate UpTime and extract other features using tsfresh [3],

6. configurable regular expression based batch processing,

7. interact with AWS S3 compatable API (including AWS S3, Cloudflare R2, Backblaze B2 Storage, etc.):

list, read, write, and delete.

Overall, MetaProcessor is an efficient and highly configurable tool that provides a reliable and easy-to-use

platform for collecting and analyzing motion data. Its components work together seamlessly, allowing users

to easily perform various data collection and processing tasks with ease.

2.1.2.1 Components

Our data collection system, MetaProcessor, is designed with a modular architecture, meaning that each

functionality of the system is separated into individual components. This approach was chosen for several

reasons. Modular design allows for easier maintenance and updates. By breaking down the system into

smaller components, each component can be updated independently of the others. This not only reduces

the workload for developers, but it also minimizes the risk of breaking other parts of the system during

updates. Additionally, components can be easily replaced or swapped out for other components if needed.

Further, modular design promotes modular and reusable code. Each component can be designed as an

independent module that can be used in other parts of the system or even in other projects entirely. This

not only saves time in development, but it also improves code quality and reduces the likelihood of bugs.

Modular components also enable greater flexibility and scalability. Since each component is designed to be

2GitHub: https://github.com/metaprocessor/metaprocessor, Documentation: https://metaprocessor.org.
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independent, it can be easily scaled to accommodate changes in requirements or increased data volumes.

New components can also be added to the system as needed without affecting the existing components,

making it easier to adapt to new use cases or technologies.

1. Preprocessor: MetaProcessor’s preprocessor is a powerful tool that facilitates the collection and pro-

cessing of data from MetaWear devices. The preprocessor is designed to operate in two stages, each of

which performs a distinct set of operations. The first stage, which is executed under the command mp

metawear, includes a range of functions that allow for the seamless download of data from MetaWear

devices. This stage also incorporates simple sensor fusion techniques, such as combining accelerometer

and gyroscope dataframes, and format conversions to ensure that the data is in a suitable format for

further analysis. The second stage of the preprocessor comprises operations that are executed outside of

the mp metawear environment. These operations are not intended to be run on low-power single-board

computers like the Raspberry Pi. Instead, they are designed to perform more complex tasks, such as

missing data interpolations and sensor data time alignment. These operations play a crucial role in en-

suring that the data collected from the MetaWear devices is accurate and reliable, which is essential for

any subsequent analysis or modeling. It is worth noting that the preprocessor’s two-stage design allows

for greater flexibility and customization in the data collection and processing pipeline. Users can choose

to execute only the first stage if they require basic data collection and formatting, or they can opt to run

both stages to perform more advanced data processing tasks. This flexibility is particularly useful for

researchers and practitioners who work with large datasets and need to tailor their data collection and

processing workflows to their specific requirements.

In order to utilize the raw IMU data obtained from MetaWear sensors, it is imperative that the data

undergoes a preliminary stage of processing. This entails the retrieval of the data from the sensors and

subsequent preprocessing. All the requisite operations are carried out through the invocation of library

calls to the underlying MetaWear C++ library 3, which is accessed via Python C-bindings. Amongst

the various operations that are performed, the most intricate involves the downloading of data from

MMS devices. To accomplish this task, we have adapted the official example and utilized an event-driven

approach to download data asynchronously from the Bosch BMI160’s accelerometer and gyroscope. It

is important to note that the accelerometer and gyroscope are treated as separate entities in the Bosch

BMI160 driver implementation 4. As a result, it is not feasible to extract both accelerometer and gyroscope

data with matching Unix epoch simultaneously. To address this issue, we propose a solution whereby the

3GitHub: https://github.com/mbientlab/metawear-sdk-cpp.
4Bosch BMI160 Datasheet: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/

bst-bmi160-ds000.pdf, Bosch BMI160 Driver: https://github.com/boschsensortec/bmi160_driver.
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6-axis IMU data is downloaded asynchronously in separate threads, as illustrated in Figure 2.3.

1 # Example based on https://github.com/mbientlab/metawear-sdk-python/blob/master/examples/log_download.py

2

3 from pathlib import Path

4 from typing import Self, Any

5

6 from mbientlab.warble import *

7 from mbientlab.metawear import *

8 from mbientlab.metawear.cbindings import *

9

10

11 class Handler:

12 def __init__(self: Self, signal: Any, dst: str) -> None:

13 self.id = libmetawear.mbl_mw_anonymous_datasignal_get_identifier(signal)

14

15 match self.id:

16 case b"acceleration":

17 print("accelerometer logger detected")

18 self.sensor = "accelerometer"

19 case b"angular-velocity":

20 print("gyroscope logger detected")

21 self.sensor = "gyroscope"

22 case _:

23 raise NotImplementedError(f"data handler for {self.id.decode()} is not implemented")

24

25 self.file = None

26 self.filename = Path.cwd()/dst/f"{self.sensor}.csv"

27 self.data_handler_fn = FnVoid_VoidP_DataP(lambda ctx, ptr: self.write(ctx, ptr))

28

29

30 def write(self: Self, ctx: Any, ptr: Any) -> None:

31 df = parse_value(ptr)

32

33 if self.file is None:

34 print(f"writing {self.filename}")

35 self.file = open(self.filename, "w")

36 # csv style header

37 self.file.write("epoch," + ",".join([f[0] for f in df._fields_]) + "\n")

38

39 # get raw IMU data for all logger axis

40 df = [str(getattr(df, f[0])) for f in df._fields_]

41 self.file.write(str(ptr.contents.epoch) + "," + ",".join(df) + "\n")

42

43 def __del__(self: Self) -> None:

44 if self.file is not None:

45 self.file.close()

Figure 2.3: Example asynchronous data handler for accelerometer and gyroscope.

The effective utilization of raw IMU data from MetaWear sensors largely depends on proper preprocessing

and formatting of the collected data. To this end, we consider various file formats available for storing

and processing the sensor data. We conducted benchmarking of popular file formats for storing series

data, namely CSV, Feather, and Parquet, to evaluate their performance characteristics. Our experiments

revealed that Parquet format is best suited to our needs, as it allows for faster data retrieval and com-

pression compared to other file formats, as shown in Table 2.4. The columnar storage format of Parquet
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also enables efficient data filtering and aggregation, which makes it particularly suitable for sensor data

analysis tasks. It is worth noting that the performance benefits of using Parquet may be dependent on

the specific hardware and software configurations, as well as the type of sensor data being processed.

aarch64-darwin, Apple M2 Max, 64GB RAM
Format Read Write Size
CSV 3.14s (100%)) 27.30s (100%) 716MB (100%)
Feather 0.16s (5.09%) 0.27s (0.99%) 285MB (39.86%)
Parquet 0.17s (5.41%) 1.38s (5.05%) 170MB (23.70%)

x86 64-linux, Intel i9 9900K, 32GB RAM
Format Read Write Size
CSV 9.37s (100%)) 83.51s (100%) 716MB (100%)
Feather 0.69s (7.36%) 0.53s (0.63%) 285MB (39.86%)
Parquet 0.52s (5.55%) 3.05s (3.65%) 170MB (23.70%)

aarch64-linux, ARM Cortex-A72 , 2GB RAM
Format Read Write Size
CSV 23.06s (100%) 172.25s (100%) 716MB (100%)
Feather 7.81s (33.87%) 8.24s (4.78%) 285MB (39.86%)
Parquet 6.69s (29.01%) 9.31s (5.40%) 170MB (23.70%)

Table 2.4: Format benchmark result comparison (10 run average): benchmarked with a 716MB, 13,398,219
lines comma seperated value file.

However, it is important to mention that using Feather and Parquet formats can be slower when running

the conversion process on a Raspberry Pi. This is due to the fact that the download operation needs to

write the raw sensor data to CSV first before conversion, and the RAM on Raspberry Pis is very limited.

As a result, our default setup is to directly write to CSV, compress both accelerometer and gyroscope data

and the accompanying metadata into a zip file, and then upload the file to a cloud object store service

provider. This approach optimizes storage space and enables easy and convenient access to the data for

subsequent analysis and modeling tasks. In summary, it is very important to select an appropriate file

format for storing and processing sensor data, taking into account factors such as data retrieval speed,

compression efficiency, and analysis capabilities.

Once the data is preprocessed and compressed in the first stage, it is crucial to ensure that the data is

securely stored and easily accessible for further analysis (more details in the Object Store). To achieve

this, MetaProcessor can use cloud object store service provider that features AWS S3 compliant API.

This allows us to easily upload and store the compressed data files in the cloud, where they can be easily

accessed and processed by researchers. It is important to note that the compressed files will remain in

the cloud unless a Watcher process (more details in Watcher) is initiated to download the files to a local

storage and subsequently delete them.
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In the second stage of preprocessing, the downloaded compressed files can undergo further processing to

tailor the data to the specific requirements of the analysis or modeling task. One important operation in

this stage is the conversion of file formats, as discussed earlier. Additionally, sensor data pre-processing

can be employed to combine data from accelerometer and gyroscope and then provide missing data

interpolations. While pre-processing step can be performed in the first stage, it is not recommended if

the first stage is executed on a low-power single-board computer like the Raspberry Pi. Finally, data

splitting is another operation in the second stage, which allows researchers to split the collected data into

multiple segments for parallel processing or model training.

2. Object Store: As mentioned above, we need a secure, intermediate place to store and backup data

collected from MetaWear sensors. As a part of data donwloading process, we will automatically upload

compressed raw IMU data to a S3 compliant API service provider and then delete local copy after

checksum verification. This approach ensures that the data is safely stored, even in the event of device

failures or data corruption.

To interact with these cloud object store service providers, MetaProcessor uses the Boto3 library5. Boto3

is the official Amazon Web Services (AWS) SDK for Python, which allows Python developers to write

software that make use of services like Amazon S3, Amazon EC2, and others. Boto3 provides a high-level

interface that abstracts the underlying API calls, making it easier to interact with various storage services.

It also offers automatic retries and exponential backoff, ensuring that the upload and download operations

are robust and resilient to network issues and service outages.

To facilitate the interaction between MetaProcessor and the cloud object store service providers, we

have implemented an Object Store helper object. This object provides methods for uploading, down-

loading, and deleting files, as well as listing objects in a specified bucket. The class also includes

support for checksum verification to ensure data integrity during file transfers. The implementation

is designed to be extensible and can be easily adapted to support additional cloud object store service

providers as needed by providing configuration options ($XDG CONFIG HOME/metaprocessor/config.toml

or $HOME/.config/metaprocessor/config.toml) avaible to end users with respect to XDG Base Direc-

tory Specification.

In addition to providing a secure and reliable storage solution, the use of cloud object store services

also enables efficient data sharing among researchers and practitioners. This is particularly useful in

collaborative projects, where multiple users need to access and process the same dataset. To facilitate

this process, MetaProcessor provides a sub-command that allows users to easily download the compressed

5Boto3: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/index.html
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data files from the cloud object store to their local machines (the Watcher process can also provide similar

feature). The CLI also supports the deletion of files from the cloud object store after they have been

successfully downloaded.

In this study, we have chosen AWS S3 as our primary cloud object store service provider. While there

are indeed cheaper alternatives available in the market, the cost of using AWS S3 for our specific use case

remained relatively low. After months of extensive usage, with approximately 40GB of compressed sensor

data stored on S3, our monthly bill never exceeded $2. Given the benefits of using AWS S3, such as its

robust infrastructure and extensive ecosystem, we believe that the slightly higher cost compared to other

providers is justifiable and provides an excellent balance of affordability and quality for our data storage

needs.

3. Watcher: The Watcher is a daemon process implemented using Python’s daemon module. It is a optional

sub-command that spawns a process that is responsible for monitoring the cloud object store for new data

files uploaded by MetaProcessor. It requires users to supply relevant API configuration parameters, such

as scan duration, API endpoint, API keys, bucket name, and a regex for file name detection. Users can

configure the Watcher to delete files from the object store upon successful download. Once the timer goes

off (as configured by the scan duration), the Watcher sends calls to the API endpoint to list files and

proceeds to download them incrementally.

In our study, we utilized a shared network storage and configured the Watcher to run on a machine with

write access to the shared storage. Additionally, we set up the Watcher to delete files from the object

store after successful downloads. This approach ensures that the data is readily available for analysis and

processing while also minimizing storage costs by automatically deleting files from the cloud object store

once they have been successfully downloaded.

4. Parameter Calculation:

MetaProcessor includes several built-in subcommands for parameter calculation. These subcommands

allow users to extract meaningful insights and features from the sensor data, making it easier to analyze

and understand the collected information. The subcommands can extract following:

(a) UpTime: The UpTime algorithm, derived from Turner Palombo’s thesis, calculates the amount of

time a subject spends upright from the sensor data [15]. We adapted the original MATLAB code to

Python to make it compatible with the MetaProcessor workflow. As introduced in the Introduction,

UpTime is an efficiently calculated parameter that can represent patient’s orthostatic intolerance

level. The parameter can be useful for understanding the overall activity levels and patterns of the
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subjects, providing valuable context for the sensor data analysis.

(b) Steps/Day: Another algorithm, Steps/Day, computes the daily step count for the subjects based

on the accelerometer data. This algorithm was initially developed by an undergraduate researcher,

McKenzie Hoggan, who previously worked on this project. The algorithm uses the local variance

method to identify steps in the accelerometer data. The local variance method works by computing

the local variance of the accelerometer data within a sliding window and detecting peaks that surpass

a threshold value. These peaks correspond to the potential steps in the data. The algorithm then

calculates the steps in both the x and y directions, outputting two step counts (based on x-axis and y-

axis) for each input accelerometer data. Similar to UpTime, the original MATLAB code was modified

and implemented in Python. The Steps/Day parameter offers insights into the daily physical activity

levels of the subjects, and is suspected to also correlate with the orthostatic intolerance level.

(c) Additional Parameters using tsfresh: tsfresh is a powerful Python library designed for auto-

matic time series feature extraction. It combines algorithms from various domains, such as statistics,

time-series analysis, signal processing, and nonlinear dynamics, with a robust feature selection algo-

rithm. By integrating tsfresh into MetaProcessor, we provide users with three options for feature

extraction: minimal feature settings, efficient feature settings, and comprehensive feature settings

6. This automated feature engineering process saves time and effort, allowing researchers to focus

on other tasks. However, it is important to note that tsfresh is limited to CPU-based computa-

tion, which can result in lengthy processing times for large datasets. Users should be aware of this

limitation and plan their feature extraction tasks accordingly.

In summary, the parameter calculation subcommands in MetaProcessor offer a wide range of options

for extracting valuable information from the collected sensor data. By utilizing these subcommands,

researchers can better understand the data and draw meaningful conclusions, ultimately enhancing the

quality and efficiency of their research projects.

2.1.2.2 Conclusions

In conclusion, MetaProcessor is a powerful, open-source tool designed to facilitate the collection, process-

ing, and analysis of raw IMU data from MetaWear devices (source code can be found at https://github.

com/metaprocessor/metaprocessor, documentation can be found at https://metaprocessor.org/). The

project has demonstrated its effectiveness by stably collecting over 1 terabyte of raw IMU data securely, with

lower error rate compared to previous methods. MetaProcessor’s user-friendly interface and streamlined

6The feature extraction settings are provided by tsfresh: https://tsfresh.readthedocs.io/en/latest/api/tsfresh.

feature_extraction.html#module-tsfresh.feature_extraction.settings.

19

https://github.com/metaprocessor/metaprocessor
https://github.com/metaprocessor/metaprocessor
https://metaprocessor.org/
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.settings
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.settings


workflow make it accessible to users with varying levels of technical expertise, ultimately saving time and

effort for medical professionals at BHC and investigators working with IMU data. MetaProcessor offers fea-

tures like preprocessor, parameter calculation tools, secure data storage using cloud object store services, and

working as a system daemon. These features, combined with the flexibility and customization options avail-

able in the data collection and processing pipeline, make MetaProcessor an invaluable tool for researchers

and practitioners working with large IMU datasets. By providing an efficient, reliable, and user-friendly

solution for managing IMU data, MetaProcessor has the potential to enhance the quality and efficiency of

research projects in various fields, such as healthcare, human computer interaction, etc.

2.2 Methods

This section provides an exploration of the clinical study that employs MetaProcessor, including the

setup, statistical analysis, and the various other methods utilized to analyze the study.

2.2.1 Clinical Study

ME/CFS

58.82%

Long COVID

29.41%

Control

11.76%

Figure 2.4: Dataset labels

and percentages.

For this project, we collaborated with the Bateman Horne Center on one

of their ongoing ME/CFS and Long COVID clinical trials. 55 subjects were

recruited (51 participated) for this study from three different cohorts: ME/CFS

(30), Long COVID (15), and healthy controls (6). Together we refer to the

study subjects as the EndoPAT study group.

2.2.1.1 Study Protocol

Each subject in the study wore an MMS sensor on their outer side of right

ankle for 1 week continuously. The only time the sensor was removed was

during a bath or shower. The subjects were instructed to place the sensor in

an orientation with the y-axis pointing upward if they were showering (so that

the algorithm would record “upright”) or with the y-axis pointing horizontally

if they were bathing (so that the algorithm would record “not upright”). The sensors were configured

as described above (refer to Hardware section), and data was processed utilizing a data collection station

deployed at BHC (Figure 2.5).

The rationale for instructing participants to position the MMS device with the y-axis pointing upward

during showering and horizontally during bathing is as follows: study participants are typically in an upright

posture while showering, as it occurs during standing time, whereas bathing typically involves a reclined

position. Consequently, the y-axis recordings of the MMS devices represent the lower leg’s relative angle

between the lower leg and an imaginary horizontal plane, thus accurately capturing posture differences

20



Figure 2.5: Data collection station deployed at BHC. 1. A Raspberry Pi 3 B+ unit taped under the
desk. 2. A uninterruptible power supply. There are also three color coded USB Micro B cable plugged
into the Raspberry Pi 3 B+ unit, providing charging and serial download functionality. Each of the three
color coded USB cable corresponds to the tmux session name displayed on the monitor, clinicians can issue
MetaProcessor commands into the corresponding tmux session, lowering error rate while enabling system
administrators remote debugging and training capability.

between showering and bathing.

In addition, participants were asked to report the number of hours they spent upright each day.

At the end of the study, data from 3 subjects had to be discarded 7, leaving 48 subjects with valid data

(Figure 2.4).

2.2.1.2 Dataset

Each data point collected by MetaProcessor was organized in the following structure (we used .csv in

our study, but it can also be in .parquet or .feature):

• {RedCap ID - BHC ID - Device ID}-Metadata.json

• {RedCap ID - BHC ID - Device ID}-Accelerometer.csv
7Invalid entries: 1. Long COVID: END003 (setup error, accelerometer only), 2. ME/CFS: END006 (setup error, gyroscope

only), 3. ME/CFS: END011 (bad firmware, the first downloading session with serial connection).
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• {RedCap ID - BHC ID - Device ID}-Gyroscope.csv

• {RedCap ID - BHC ID - Device ID}-Preprocessed.csv

• Days/{RedCap ID - BHC ID - Device ID - Day Number}.csv

The files named *-Accelerometer.csv and *-Gyroscope.csv contain raw sensor data (direct output

from MMS sensors), while the *-Metadata.json file contains session identifiers, start and end timestamps

of the session, as well as any optional comment provided by clinicians or study participants. These metadata

components supply the essential context required for subsequent analyses. The remaining two files/folders

are generated through either manual or automatic means, contingent upon the configuration of the MetaPro-

cessor, specifically its daemon process. These files represent the outcomes of the MetaProcessor’s preliminary

processing phase, which involves operations such as dataframe merging, timestamp alignment, and missing

data interpolation, etc.

Each valid pre-processed entry (*-Preprocessed.csv) is a single comma separated value file with 7

columns (unix epoch, accelerometer x,y,z, gyroscope x,y,z) and about 12 million to 17 million rows (25Hz ·

60s · 60min · 24h · 7days) in length.

Aside from the data collected by the MMS devices, each patient underwent a comprehensive evaluation

during their initial visit, including vital signs measurements. They were also instructed to complete and

submit various survey forms online, provided additional information about their health status. The vital

measurements and survey data collected and are included in our dataset contains: DANA Brain Vital

(DANA), Augmentation Index (AI), Augmentation Index Normalized to HR 75 bpm (AI75), Baseline Heart

Rate (bpm) (BLHR), Natural Base Log of Reactive Hyperemia Index (LnRHI), Reactive Hyperemia Index

(RHI), and Hours of Upright Activity (HUA).

The integration of MMS sensor data with these additional health metrics provided a comprehensive

dataset for the study, allowing researchers to analyze various aspects of the participants’ health and draw

meaningful conclusions about the effectiveness of clinical trials. However, during the analysis, we did not

conduct specific, in-depth evaluations of the collected survey data. This was due to above mentioned survey

data was not the primary focus of our research, and we do not have valid hypothesis for collected survey

data that could relate with the severity classification of ME/CFS.

2.2.1.3 Feature/Parameter Calculation

To further evaluate and analyze the health status of the study participants, the pre-processed data

were utilized to calculate various parameters, including UpTime and Steps/Day. These calculations were

initially performed using MATLAB, which were later converted to Python for integration with our existing
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data processing workflow (algorithm used for UpTime is included in Appendix A, and algorithm used for

Steps/Day is included in Appendix B), MetaProcessor.

The primary objective of these calculations was to derive quantitative measures representing the subjects’

physical activity levels that can infer the severity of orthostatic intolerance, then further reflect the severity

of ME/CFS (Long COVID). Upon calculating the UpTime and Steps/Day results for each participant using

pre-processed data, the output was stored in dataframes for further analysis. Additionally, we incorporated

survey data provided by BHC, as well as clinical evaluation results obtained during each participant’s visit to

BHC. Integrating these data sources into a unified dataframe facilitated a comprehensive analysis of various

health parameters in the context of the study.

The resulting dataframes, comprised of UpTime, Steps/Day, survey data, and clinical evaluation results,

served as the foundation for subsequent statistical analyses. These analyses aimed to uncover patterns and

relationships among the various parameters and their potential associations with the severity classification of

ME/CFS or Long COVID. The outcomes of these statistical analyses are discussed in detail in the following

sections and chapters of this thesis.

2.2.2 Statistical Analysis

Building upon the dataset compiled from the feature and parameter calculations, we used multiple

statistical analysis methods to scrutinize the relationships among the various features/parameters. In the

following sections, we will layout the analysis for three different cohorts, ME/CFS, Long COVID, and healthy

control, for UpTime, HUA, and Steps/Day.

With our custom graphing tool, we can easily display the t-test results for the collected data. Although

results for survey data do not form the central part of our analysis, they provide valuable supplementary

information that can be useful for future research endeavors. In order to make this data accessible and

to maintain transparency in our research process, we have included these graphs and t-test results in the

Appendix C of this thesis. This additional information might prove beneficial for other researchers who are

interested in exploring the relationships between various physiological and cognitive measures in the context

of ME/CFS and Long COVID clinical trials.

2.2.2.1 UpTime

As an initial step in our analysis, we plotted the overall average UpTime across cohorts to observe visual

patterns. In Figure 2.6, we noticed a substantially higher average on day 1 compared to the subsequent

days. Consequently, we decided to focus our analysis on days 2 to 6, as these days include data from all

participants while demonstrating a more consistent trend.

The variable n represents the number of participants who contributed IMU data for a specific day;
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Figure 2.6: Average UpTime percentage per day accross cohorts.

however, it is crucial to note that this does not imply a full 24-hour data collection for each participant.

For instance, on day 6, n = 48, while on day 7, n = 45. This discrepancy indicates that three participants

concluded their participation in the study on day 6, and as a result, we do not possess complete 24-hour

recordings for these individuals on that day.

As mentioned above, we observe a notably higher average on day 1 in comparison to subsequent days. We

attribute this finding to the timing of the study, which typically commenced mid-day or in the afternoon. On

day 1, participants arrived at the research clinic and were seated in an upright posture for an extended period,

followed by traveling home, which also involved maintaining an upright posture (standing or sitting on public

transport vehicle, or driving, or walking/jogging/running). Consequently, with an estimated recording time

of fewer than 12 hours on day 1, a higher average UpTime is observed.

Given days 2 through 6 showed a more consistent trend, we used the UpTime data for each participant

(originally spanning day 1 to day 6/7/8) and calculated the average from day 2 to day 6. This overall UpTime

represents the participants’ overall uprightness score throughout the study’s duration. To further assess the

statistical significance of the differences in UpTime values between the three cohorts, we performed grouped

t-tests at 95% confidence level to differentiate the levels of severity of orthostatic intolerance as reflected

by UpTime. By evaluating these results, we aimed to gain insights into the potential diagnostic value of

UpTime as a digital-biomarker for orthostatic intolerance and related conditions, such as ME/CFS and Long

COVID.
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2.2.2.2 HUA

Figure 2.7 presents the daily average of HUA for all study participants across the different cohorts.

During the initial analysis, we did not observe significant differences between the days compared to UpTime.

However, to reduce unnecessary variability, we still chose to select days 2 to 6 and calculate the average

HUA for each patient as an overall rating when performing grouped t-tests.

Figure 2.7: Average hours of upright activity per day across cohorts.

HUA as a self-reported measure, relies on patients logging into a secure portal and manually reporting

their daily upright activity, this approach inherently introduces a degree of variability in the number of

participants engaging in the survey throughout the study. Despite the consistent participation of all sub-

jects on the first day, the number of participants fluctuates during the study’s course. This variation may

attributed to several factors, including the convenience of the data reporting process, patients’ adherence to

the protocol, or other external factors influencing individual engagement in the study.

Moreover, the daily average values derived from the HUA survey show a relatively smaller range of

variation when compared with UpTime. The daily average HUA ranges from 7.84 hours to 8.57 hours,

indicating a more stable pattern across the study period. This observation could be attributed to the

subjective nature of self-reporting, which may not capture the subtle variations in patients’ daily activities

as effectively as objective sensor data.

2.2.2.3 Regression Analysis: HUA and UpTime

Given the similarities between HUA and UpTime as measures of orthostatic intolerance severity, conduct-

ing a linear regression analysis to explore the relationship between these two parameters is of great value.
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Regression analysis allows us to directly compare HUA and UpTime values, enabling a more comprehensive

understanding of their relationship and the implications of this relationship for patients with ME/CFS and

Long COVID (results are in the upcoming chapter).

2.2.2.4 Steps/Day

We incorporated Steps/Day as a parameter in our study due to the ease of obtaining this data from

readily available devices, such as smartphones and wearable technology. If Steps/Day is demonstrated to be

a reliable digital-biomarker that can differentiate levels of OI severity and subsequently distinguish between

ME/CFS cases, it could significantly simplify the integration of this feature into ongoing research efforts.

This cost-effective approach would eliminate the need to invest in off-the-shelf IMU sensors, making it a

more accessible and practical option for researchers and clinicians alike.

Moreover, there is reason to believe that Steps/Day may correlate with UpTime, as step count is in-

trinsically related to an individual’s daily activity intensity, which could reflect their OI severity level. By

exploring this potential relationship, we aim to assess the utility of Steps/Day as a proxy measure for OI and

its value as a supplementary source of information in the context of ME/CFS and Long COVID research.

Figure 2.8: Average steps/day (calculated based
on x-axis) across cohorts.

Figure 2.9: Average steps/day (calculated based
on y-axis) across cohorts.

As shown in Figures 2.8 and 2.9, day 1 displays a markedly lower step count in comparison to other days,

deviating from the observed trends for subsequent days. This observation supports the hypothesis that we

previously discussed in the context of UpTime analysis, which posits that patients are likely to be sitting

upright during their visits to the research clinic and traveling home in an upright posture. As a result, this

leads to an inflated UpTime percentage on day 1 (refer to Figure 2.6).

In contrast, days 2 to 6 showcase a consistent straight line, which lends credibility to the accuracy and

reliability of our data collection methods. Taking into account the rationale applied in the UpTime analysis,
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we chose to perform grouped t-tests on days 2 to 6 at 95% confidence level, as these days offer a more precise

representation of patients’ daily step counts and activity levels.

2.3 Conclusions

In this chapter, we presented a comprehensive overview of the custom data collection system prototype

that was designed and developed to facilitate the collection, processing, and analysis of data from EndoPAT

study, but extendable to any other study requires a data collection infrastructure that utilizes MbientLab’s

MetaMotion series IMU. We provided an in-depth examination of the design choices, benchmarks, usage,

and analytical data obtained from the extended usage of MetaProcessor by the BHC. Furthermore, it set

the stage for a more detailed investigation of the data collected using MetaProcessor and the potential

contributions this information can make to the related fields.

In the System section, the chapter discussed the overall hardware choices and system configurations,

including the IMU logging rate, resolution, and the significant increase in download speed achieved by using

Bluetooth LE and Serial download (approximately 14.4 times faster). Additionally, the error rate analysis

revealed that switching to MetaProcessor resulted in a 5-fold improvement in reliability, further emphasizing

the value of out system prototype.

Moreover, in the Methods section, the chapter presented the recruitment information for the EndoPAT

study: 55 subjects (30 ME/CFS, 15 Long COVID, and 6 healthy controls), with 51 ultimately participating

in the research. The basic study protocol, data collection plan, processing plan, and the statistical anal-

ysis conducted on the pre-processed data were also thoroughly described, providing a solid foundation for

interpreting the results and drawing meaningful conclusions from the study findings.

In the forthcoming chapter, Results and Discussions, we will delve deeper into the data collected using

MetaProcessor, exploring the various relationships between variables and the potential implications of the

findings for patients with ME/CFS, Long COVID, and healthy controls. Additionally, we will discuss the

limitations of the current study, the potential avenues for future research (and exploration of machine learning

methods utilized for initial exploration of our dataset), and the broader impact of the work presented in this

thesis on the field of orthostatic intolerance and related conditions.
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3 Results and Discussion

In this chapter, we will explain the results obtained from the data collected using MetaProcessor from

EndoPAT study, examining the intricate relationships between variables and their potential implications for

individuals with ME/CFS, Long COVID, and healthy controls. Furthermore, we will discuss the limitations

of the present study, identifying potential avenues for future research, including the application of various

machine learning methods as part of an exploratory pilot investigation. Lastly, we will offer some final

thoughts and reflections on the broader impact and significance of this work in the field of ME/CFS, including

similar medical conditions like Long COVID, connected by orthostatic intolerance and related clinically

observed symptoms.

3.1 Results

The following section presents the key findings from the analysis of the data collected using MetaProcessor

in the context of patients with ME/CFS, Long COVID, and healthy controls. We draw conclusions that

contribute to our understanding of the severity of orthostatic intolerance, then further imply the details of

the severity classification of ME/CFS and related medical conditions and its impact on patients with these

conditions.

3.1.1 Integration of MetaProcessor

The integration of serial-download-capable firmware to MMS devices significantly improved our data

download speed, achieving more than a 14-fold increase. The utilization of MetaProcessor yielded a consid-

erable improvement in reliability compared to the legacy method. Specifically, we observed a 5x increase

in reliability, with an overall error rate of only 0.58% (172 sessions) for MetaProcessor, compared to a 10%

error rate (20 sessions) for the legacy method. These results demonstrate the effectiveness of MetaProcessor

in enhancing data collection and processing efficiency.

3.1.2 Predictive Power of UpTime, HUA, and Steps/Day

In our pursuit to differentiate the levels of severity of orthostatic intolerance as reflected by UpTime,

HUA, and Steps/Day, we used multiple t-tests to assess the statistical significance of the differences in

UpTime values between three cohorts.
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Figure 3.1: Grouped t-test performed at 95% confidence level for Upright Activity Time, ME/CFS vs. Long
COVID vs. Control. In the legend, “Mean” is mean plus or minus a standard error.

3.1.2.1 UpTime

In Figure 3.1, at 95% confidence level, the t-test comparing the UpTime of the ME/CFS cohort and

the control cohort yielded a highly significant p-value of 0.00004, suggesting a strong difference between the

two groups. Similarly, the t-test comparing the UpTime of the Long COVID cohort and the control cohort

produced a significant p-value of 0.01185, again highlighting a considerable difference between these groups.

Lastly, when comparing the ME/CFS cohort to the Long COVID cohort, the t-test revealed a p-value of

0.02194, indicating a statistically significant distinction between these two cohorts as well.

In terms of the error bars representing the variability of the data, the ME/CFS cohort displayed a range

from approximately 19% UpTime to about 25% UpTime, while the Long COVID cohort exhibited a range

from about 25% UpTime to around 33% UpTime. The control cohort presented a wider range, extending

from about 34% UpTime to roughly 43% UpTime.

3.1.2.2 HUA

Figure 3.2 presents the results of the t-tests performed at a 95% confidence level. The findings revealed

statistically significant differences between each of the three cohorts. Specifically, the p-values obtained

were as follows: p(ME/CFS vs Control) = 0.00000, p(Long COVID vs Control) = 0.00755, and p(ME/CFS

vs Long COVID) = 0.04066. In terms of the HUA error bars, the ME/CFS cohort exhibited a range of
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Figure 3.2: Grouped t-test performed at 95% confidence level for Hours of Upright Activity, ME/CFS vs.
Long COVID vs. Control. In the legend, “Mean” is mean plus or minus a standard error.

approximately 3.75 to 6 HUA, the Long COVID cohort showed a range of about 4.75 to 9 HUA, and the

healthy controls displayed a range of roughly 8.5 to 16.25 HUA.

3.1.2.3 Steps/Day

Despite the differences in the x and y axes, we expect that the data derived from both approaches will

be consistent and should not interfere with our ability to draw meaningful conclusions. By comparing these

data sources, we can further ensure the robustness of our findings and enhance our understanding of the

relationship between step count and orthostatic intolerance severity in patients with ME/CFS and Long

COVID. This comprehensive analysis will ultimately contribute to a more nuanced understanding of these

conditions and inform the development of more effective, targeted treatment strategies.

In Figures 3.3 and 3.4, the t-test results reveal a statistically significant difference in step counts between

the ME/CFS cohort and the healthy control group (x-axis: p = 0.01059, y-axis: p = 0.08665). These findings

suggest that step count may indeed be relevant in differentiating between individuals with ME/CFS and

healthy controls.

However, it is important to note that the error bars for the control group nearly completely overlap with

those of both the Long COVID and ME/CFS groups. This overlap introduces an element of uncertainty

in the distinction between these cohorts based solely on step count. Furthermore, although the p-value for
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Figure 3.3: Grouped t-test performed at 95% confidence level for Steps/Day, x-
axis, ME/CFS vs. Long COVID vs. Control. In the legend, “Mean” is mean plus
or minus a standard error.

Figure 3.4: Grouped t-test performed at 95% confidence level for Steps/Day, y-
axis, ME/CFS vs. Long COVID vs. Control. In the legend, “Mean” is mean plus
or minus a standard error.
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the comparison between the ME/CFS and Long COVID cohorts is relatively low, this does not necessarily

imply that step count is a valid digital biomarker for distinguishing between these two groups.

3.1.2.4 Conclusions

In the comparison between ME/CFS and healthy control groups, we found the following:

• UpTime yielded a low p-value of 0.00004, indicating a significant difference between the groups, thus

demonstrating its potential as a reliable measure for differentiating between ME/CFS and healthy

control populations.

• HUA had a p-value of less than 0.00004, suggesting that it could also serve as a useful measure for

distinguishing between ME/CFS and healthy control groups.

• Steps/Day, x-axis and y-axis, had p-values of 0.01059 and 0.08665, respectively, indicating that step

count may be relevant for differentiating between individuals with ME/CFS and healthy controls.

However, the overlap in error bars suggests that step count alone may not be sufficient to reliably

distinguish between these groups.

In conclusion, our findings suggest that UpTime and HUA hold promise as potential digital biomarkers

for differentiating between ME/CFS, Long COVID, and healthy control populations. However, the utility of

step count as a sole measure to distinguish between these groups remains uncertain. Future research should

explore the integration of multiple digital biomarkers and potential confounding factors to improve the

accuracy and reliability of these measures in the context of orthostatic intolerance severity among patients

with ME/CFS and Long COVID.

3.1.3 Relationship between UpTime and HUA

HUA and UpTime are both designed to quantify the duration of time patients spend in an upright posi-

tion, yet they differ in their units of measurement. HUA is expressed in hours, while UpTime is represented

as a percentage of total time. To enable a meaningful comparison and regression analysis, it is necessary

to convert one of these measures to the same unit as the other. In this case, we can convert HUA to a

percentage by dividing the HUA value by 24 hours.

Figures 3.5 and 3.6 demonstrate a positive relationship between HUA and UpTime, with a coefficient

of determination (r2) of 0.68. While this value is considered acceptable, it does not necessarily indicate a

strong correlation between the two measures. This moderately positive relationship suggests that HUA and

UpTime are related to some extent, reflecting consistency between self-reported experiences and objective

measurements of orthostatic intolerance severity.
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Figure 3.5: Linear regression analysis between
UpTime and Hours of Upright Activity.

Figure 3.6: Linear regression analysis between
UpTime and Hours of Upright Activity (HUA is
converted into a percentage).

Interestingly, our analysis reveals that study participants are seemingly overestimating their HUA values

in comparison to their corresponding UpTime data. For example, certain data points at 20% HUA were

found to correspond to approximately 15% UpTime. However, at a closer look, there is a larger range

of HUA values compared to UpTime, with the highest HUA reaching approximately 60% and the highest

UpTime at about 45%. In contrast, the lowest HUA values range from around 2% to 8%, while the lowest

UpTime is at 10%. Considering the slope of 1.3, this finding highlights the potential discrepancies between

subjective reporting and objective measurements, emphasizing the importance of using both methods to

gain a comprehensive understanding of patients’ orthostatic intolerance.

In summary, the regression analysis reveals a moderately positive correlation between UpTime and HUA

(r2 = 0.68), indicating a consistent relationship between these measures. The trend of overestimating HUA

values compared to corresponding UpTime data underscores the potential discrepancies between subjective

reporting and objective measurements. These insights emphasize the importance of utilizing both methods

to gain a comprehensive understanding of patients’ orthostatic intolerance and inform treatment approaches

for ME/CFS and Long COVID patients.

3.1.4 Long COVID Findings

Our analysis of the data related to Long COVID patients produced the following results:

• UpTime can be used to distinguish Control vs. Long COVID (p < 0.019) and ME/CFS vs. Long

COVID (p < 0.022).

• HUA can be used to distinguish Control vs. Long COVID (p < 0.0076) and ME/CFS vs. Long COVID
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(p < 0.041).

Nonetheless, Steps/Day did not demonstrate sufficient statistical significance to be used as a predictor

to differentiate between Control vs. Long COVID and ME/CFS vs. Long COVID. This finding further sup-

ports our recommendation to consider Steps/Day as a supplementary tool rather than a primary diagnostic

indicator for these groups.

It is important to note that the root cause of Long COVID and ME/CFS is yet to be determined, and

these two diseases might respond differently to the same treatment. Given the uncertainty surrounding

the etiology of these conditions, we cannot make conclusive claims in the analysis of Long COVID data.

Our findings should be interpreted with caution, and further research is needed to better understand the

underlying mechanisms, severity classification and potential treatment strategies for both Long COVID and

ME/CFS patients.

3.2 Discussions

In this section, we discuss the hardware considerations, parameter analysis, and implications of our

findings, as well as the limitations and future directions of our study. Our aim is to provide a comprehensive

understanding of the factors influencing our results, and to highlight potential areas for improvement and

further research.

3.2.1 Hardware Considerations

While we have utilized a Raspberry Pi 3A for our data collection and processing, it is not necessary to

use this specific single board computer. Any computer with the capability to run a Linux-based operating

system and install the required MetaProcessor dependencies can be used. However, the capability of the

CPU and size of RAM will affect the transcoding speed (i.e., converting from csv to parquet or feature).

It is possible that the shell environment will terminate the process if MetaProcessor consumes too many

system resources. Therefore, we recommend using a data collection station with at least 2GB of RAM and

16GB of storage to run MetaProcessor at clinicians’ side. Although not required, we advise using parquet

or feature for all use cases to accelerate compression time and data upload time to cloud object storage.

3.2.2 Parameter Analysis and Implications

Based on our findings, we can confidently assert the following:

• Patients with ME/CFS have significantly lower UpTime compared to healthy controls (p < 0.00004).

• Patients with ME/CFS have significantly lower HUA compared to healthy controls (p < 0.00001).
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• Patients with ME/CFS have significantly lower step counts compared to healthy controls (p < 0.1).

Considering the results on the predictive power of UpTime, HUA, and Steps/Day, we can confidently

conclude that UpTime is a superior overall predictor of orthostatic intolerance severity (and consequently,

the severity of ME/CFS and Long COVID) compared to Steps/Day, with lower p-values across all groups.

Although Steps/Day can be used as a statistically significant predictor for differentiating ME/CFS and

healthy control groups (x-axis: p = 0.01059, y-axis: p = 0.08665), we recommend using it as a supplementary

tool rather than a definitive diagnostic indicator without further analysis.

While HUA exhibited a slightly lower p-value, the difference of less than 10−4 is negligible. Moreover,

UpTime, as an objective digital-biomarker, demonstrated a tighter error bar compared to HUA, which is a

survey-derived feature.

3.2.3 Limitations and Future Directions

It is essential to consider that the root cause of Long COVID and ME/CFS is yet to be determined,

and these two diseases might respond differently to the same treatment. Given the uncertainty surrounding

the etiology of these conditions, we cannot make conclusive claims in the analysis of Long COVID data.

Our findings should be interpreted with caution, and further research is needed to better understand the

underlying mechanisms and potential treatment strategies for both Long COVID and ME/CFS patients.

Additionally, our study highlights the potential discrepancies between subjective reporting and objective

measurements, emphasizing the importance of using both methods to gain a comprehensive understanding

of patients’ orthostatic intolerance. By examining these relationships and their implications, researchers can

further refine their approaches to measuring and addressing orthostatic intolerance in patients with ME/CFS

and Long COVID, ultimately contributing to improved treatment outcomes and patient experiences.

3.3 Initial Exploration and Future Work

In this thesis, we mainly discussed our approach of converting raw IMU data into basic parameters (HUA,

UpTime, and Steps/Day) and apply statistical methods to them. Considering the size of the dataset, by

no mean our analysis is complete. In this section, we will include the possible approaches of extending our

analysis of basic parameters with more advanced machine learning methods in order get a better prediction

of ME/CFS and Long COVID disease severity, during the trail, we considered multiple methods: feature

extraction with tsfresh [3] (initial exploration), experimental ML approach with Transformers targeted to

time-series classification [10] (future work), and Dynamic Movement Primitive (DMP) based motion analysis

and recognition [18] (future work).
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3.3.1 Feature Engineering with tsfresh

Feature extraction with tsfresh is a feature engineering method that uses time series data to extract

meaningful features [3]. tsfresh is a Python package for automated time series feature extraction and

selection based on the FeatuRe Extraction and Scalable Hypothesis testing (FRESH) [2] algorithm. This

package is designed to extract and evaluate different time series features rapidly and automatically from time

series datasets. It provides multiple series characterization methods that compute a large number of time

series features. These features can be used to construct a design matrix that can be extended by additional

univariate attributes and feature vectors from other types of time series. The design matrix can then be used

for unsupervised machine learning, or supervised machine learning, in which statistically significant features

can be selected with respect to the classification or regression problem at hand.

Even though tsfresh can extract a large number of features from the time series data automatically, we

failed to utilize it to its full extent. tsfresh is benchmarked and showed good results with small datasets,

meaning the row number of the testing datasets are relatively small (mostly less than 10 thousand rows),

which may not be applicable to our EndoPAT study data as each of our data point averaged around 15 million

rows, containing complex patterns and noises. Additionally, the feature extraction process with tsfresh

requires a considerable amount of computational resources when running on larger datasets, which may not

be feasible for our purpose. In our test runs, with the “basic feature” 1 settings (60 columns, 10 columns

each for 3-axis accelerometer data and 3-axis gyroscope data), the calculation lasted around 1 minute per

patient day, and for the “efficient feature” 2 settings (about 4700 columns) calculation lasted from 49 hours

per patient day to 169 hours per patient day 3.

Using the “basic features” calculated with tsfresh, we classified the 60 output features into different

groups: possible strong correlation, possible correlation, and theoretically not possible to have any correlation

(Table 3.1. Our reasoning behind is due to the wearing orientation of MMS devices: forward corresponds to

x-axis of IMU, vertical corresponds to y-axis of IMU, and left corresponds to z-axis of IMU.

The forward x-axis and left z-axis directions of the IMU, represented by Ax and Az, are expected to

demonstrate some correlation with disease severity when considering sum, medium, and RMS values. This is

because these axes capture the horizontal and lateral movements during daily activities, which are likely to be

affected in patients experiencing orthostatic intolerance, fatigue, and other symptoms common in ME/CFS

and Long COVID.

On the other hand, the vertical direction, y-axis, represented by Ay, should not have a significant cor-

1Defined as MinimalFCParameters in tsfresh.
2Defined as EfficientFCParameters in tsfresh.
3The unit, “patient day” is defined as 24 hours worth of the study participants’ accelerometer and gyroscope data, for

example, if we collected 7 days of sensor data for 2 study participant, we’ll have 14 “patient days” worth of data.
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Feature Ax Ay Az Gx Gy Gz

sum values R N R N R N
median R N R N R N
mean R N R N R N
length N N N N N N
standard deviation R N R N R N
variance R N R N R N
root mean square S N S R S R
maximum N N N N N N
absolute maximum N N N N N N
minimum N N N N N N

Table 3.1: Analysis on tsfresh’s MinimalFCParameters. Ax|y|z and Gx|y|z corresponds to accelerometer’s
and gyroscope’s axis. “S” (in green) - might have strong correlation; “R” (in blue) - might have correlation;
“N” (in black) - should not have any correlation.

relation with disease severity. This is because the y-axis mainly captures gravitational forces and is less

informative in capturing the specific movements and postural changes that are relevant to these conditions.

Gy represents the angular velocity of the gyroscopic sensor, is expected to be a significant predictor of

movement activity, particularly when considering RMS values. This is because the RMS values effectively

capture the variations in movement intensity, which can be informative in assessing the overall activity levels

of the patients.

Lastly, the variance for both acceleration and angular velocity should be predictive of activity levels.

Higher variances in these measurements indicate a broader range of motion and more diverse movement

patterns, which can be associated with higher activity levels in patients. Conversely, lower variances suggest

reduced motion and a more limited range of activities, which can be indicative of lower activity levels

commonly observed in patients with ME/CFS and Long COVID.

Feature Ax Ay Az Gx Gy Gz

sum values 0.041924 0.0 0.191563 0.000187 0.000523 0.0
median 0.015792 0.0 0.228202 0.647568 0.006879 0.000005
mean 0.041332 0.0 0.187355 0.00018 0.000533 0.0
length 0.000035 0.000035 0.000035 0.000035 0.000035 0.000035
standard deviation 0.159109 0.000353 0.005491 0.027135 0.0 0.0
variance 0.110206 0.000389 0.004282 0.011215 0.0 0.0
root mean square 0.000826 0.0 0.000138 0.027227 0.0 0.0
maximum 0.836597 0.013301 0.690229 0.114135 0.07336 0.198528
absolute maximum 0.020304 0.021652 0.412479 0.073017 0.202262 0.043988
minimum 0.002246 0.829734 0.412457 0.020094 0.333653 0.031144

Table 3.2: T-Tests for features gendered on tsfresh’s MinimalFCParameters: Control vs. ME/CFS p-value
table. “S” (in green) - might have strong correlation; “R” (in blue) - might have correlation; “N” (in black)
- should not have any correlation.
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Feature Ax Ay Az Gx Gy Gz

sum values 0.472635 0.00005 0.269436 0.099531 0.425181 0.000004
median 0.641273 0.000002 0.196691 0.957038 0.541774 0.001393
mean 0.46812 0.000073 0.269345 0.10009 0.428071 0.000005
length 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034
standard deviation 0.012679 0.097511 0.000537 0.024193 0.002971 0.003611
variance 0.020627 0.097818 0.000769 0.011676 0.002415 0.004402
root mean square 0.01226 0.000003 0.000904 0.024315 0.002977 0.003609
maximum 0.437505 0.028048 0.21497 0.802929 0.01724 0.89266
absolute maximum 0.097325 0.037574 0.131244 0.828048 0.053146 0.697704
minimum 0.066436 0.934615 0.133253 0.775239 0.340476 0.363448

Table 3.3: T-Tests for features gendered on tsfresh’s MinimalFCParameters: Control vs. Long COVID
p-value table. “S” (in green) - might have strong correlation; “R” (in blue) - might have correlation; “N”
(in black) - should not have any correlation.

Feature Ax Ay Az Gx Gy Gz

sum values 0.032805 0.010449 0.599469 0.073061 0.000482 0.365713
median 0.002744 0.00173 0.685771 0.642964 0.01127 0.921931
mean 0.03251 0.009921 0.589232 0.071567 0.000463 0.361612
length 0.589508 0.589508 0.589508 0.589508 0.589508 0.589508
standard deviation 0.328658 0.000856 0.989138 0.756259 0.020668 0.003687
variance 0.494278 0.001406 0.723901 0.519591 0.012312 0.001817
root mean square 0.071836 0.000092 0.124049 0.756988 0.020627 0.003683
maximum 0.15072 0.910401 0.293532 0.011299 0.508641 0.155688
absolute maximum 0.711243 0.776089 0.392233 0.004648 0.403723 0.046802
minimum 0.287907 0.688138 0.310116 0.004312 0.972233 0.171762

Table 3.4: T-Tests for features gendered on tsfresh’s MinimalFCParameters: ME/CFS vs. Long COVID
p-value table. “S” (in green) - might have strong correlation; “R” (in blue) - might have correlation; “N”
(in black) - should not have any correlation.

Upon conducting grouped t-tests (Tables 3.2, 3.3, 3.4), we noticed promising results for most parameters

marked as having possible correlation and possible strong correlation across all groups. However, further

in-depth analysis is required to draw more concrete conclusions.

As tsfresh is not the primary focus of our research, we included all results of grouped t-tests in the

tables and encourage interested readers to explore this area further for a more comprehensive understanding

of the relationships between these features and the conditions under study. Future work in this area could

potentially reveal additional insights into the utility of these features as potential biomarkers for disease

severity and activity levels in patients with ME/CFS and Long COVID with overall lower computation cost.

3.3.2 DMP Based Pattern Recognition and Matching

DMP is a frequently used technique in robotics to generate trajectories: 1. Learn the input trajectory so

that the motor system can reproduce the trajectory, 2. Adapt the trajectory to new goal(s). Trajectories in
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this context refer to the path that a robot’s end effector, such as its arm or gripper, should follow over time

to accomplish a task. The trajectory generated by a DMP is typically represented as a sequence of positions,

velocities, and accelerations over time. In most cases, DMPs are generated in a demonstrative manner, for

example, a human operator or another robot provides a reference trajectory for the robot to follow. Since

the DMP models the trajectory as a non-linear dynamical system, it provides an adaptable and a flexible

starting point which can be used in other dynamic systems for them to generate similar trajectories via

reinforcement learning to achieve different goals or adapt to changes in the environment.

In Dynamic Movement Primitives in Robotics: A Tutorial Survey, the authors acknowledged the practi-

cality of using DMP based approach to perform motion analysis and recognition [18]. DMP approach allows

the user to generate movement trajectories by defining a set of attractor states and weights that modulate

the movement of the system 4, such that this approach could be very effective in generating both periodic and

non-periodic movements with varying complexities. These properties make it an attractive tool for motion

analysis and recognition, as it can model and recognize a wide range of movement patterns.

However, ME/CFS is a complex and poorly understood medical condition that affects various systems

in human bodies. Due to the diverse and variable nature of its symptoms, it is difficult to define a set of

representative movement primitives that can be used to analyze and recognize the condition. Also, we are still

unsure about whether ME/CFS or related medical syndromes will exhibit different symptoms on different

individuals or not, this variability and inconsistency in human motor function/performance can make it

challenging to develop accurate and reliable trajectory models. Furthermore, the lack of understanding of

ME/CFS and the absence of objective diagnostic tests for the condition make it difficult to identify clear and

consistent patterns of movement. Without better understanding of the underlying mechanisms of ME/CFS,

it is challenging to develop accurate models of movement that can be used to analyze and recognize the

condition with DMP.

In conclusion, despite the attempt, the use of the DMP may not be a feasible to analyze ME/CFS

and its related medical syndromes. The limited understanding of ME/CFS, the lack of clinically proven

representative movement primitives, the variability and inconsistency in human motor function/performance,

and the lack of clear and consistent movement patterns all make it difficult to develop accurate models of

movement.

3.3.3 Time-Series Data Classification with Transformer

Transformers, originally designed for language modeling, have emerged as an efficient alternative to

recurrent neural networks in various sequential learning tasks [10]. However, they may not be ideally suited

4A very good short explainer (Patterns of Behavior in the System): https://content.csbs.utah.edu/~butner/systems/

DynamicalSystemsIntro.html.
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for our specific use case. Our dataset contains only 51 data points, which is insufficient for training a model

with the desired performance. Furthermore, each data point in our dataset consists of millions of rows,

posing significant challenges for processing and using as input for a Transformer model.

In our initial attempt to develop an encoder and decoder for a Transformer, we encountered limita-

tions due to our current level of expertise. Nonetheless, given the recent trend in Generative Pre-trained

Transformer (GPT), there is significant potential for creating a time-series specific model based on a similar

architecture. Pursuing this direction in future work could yield substantial improvements in time-series data

classification and analysis for orthostatic intolerance, ME/CFS, and Long COVID research.

3.3.4 Other Possible Approaches

During our two years of research experience in the time-series data processing field, we have identified

some areas that warrant further exploration and development. In particular, we noticed a relative lack of

contributions compared to other fields.

One potential approach is to address the limitations of consumer-level electronics, which often do not

provide sufficient API access for developers to collect low-level IMU data and perform real-time analysis. Off-

the-shelf IMUs are generally more expensive than their manufacturing cost, which makes the development

of custom hardware tailored to our data collection needs an attractive alternative. Such custom hardware

could include an IMU with a larger battery, increased storage capacity, and improved low-level API access.

Another area for improvement is in the feature extraction process. Given the size of our dataset, feature

extraction can be cumbersome and inefficient. Developing a distributed time-series feature extraction tool,

that could provide similar features to tsfresh, could prove beneficial. Additionally, exploring advanced

machine learning techniques to overcome the limitations of small dataset size with unusually large data

points may lead to more robust findings and improved analysis. By pursuing these future research directions,

we aim to enhance the overall understanding and treatment of orthostatic intolerance, ME/CFS, and Long

COVID.

3.4 Conclusions

The primary objective of our research was to design a system prototype for collecting IMU data and

streamlining the data processing workflow, with the ultimate goal of using our proposed parameters/features

to assess the severity of ME/CFS and Long COVID.

Utilizing MbientLab’s MetaMotionS IMU and our system prototype, MetaProcessor, we analyzed data

from the EndoPAT study and determined that UpTime is an objective digital biomarker with superior overall

performance compared to HUA and Steps/Day. Upon further validation, UpTime could be confidently
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proposed to regulators as an objective clinical measure for disease severity classification in the context of

ME/CFS and related medical conditions. Additionally, HUA and Steps/Day could serve as supplementary

biomarkers to further enhance the accuracy of the assessment.
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A UpTime Algorithm (Python)

Following Python snippet is derived from the original upright position time algorithm written in MATLAB

by Turner Palombo, it is Incorporated into MetaProcessor then extracted from the code base with extra

comments, please refer to MetaProcessor’s GitHub repository to see the usage in context.

1 def uptime(filename: str) -> pd.DataFrame:

2 start_time = datetime.now()

3 df = read(filename)

4

5 # initialize required dataframes

6 uptime = pd.DataFrame(columns=["epoc (ms)", "upright (0/1)", "angle (deg)"])

7 filtered = pd.DataFrame(columns=[

8 "epoc (ms)",

9 "x-axis (m/s^2)", "y-axis (m/s^2)", "z-axis (m/s^2)",

10 "x-axis (rad/s)", "y-axis (rad/s)", "z-axis (rad/s)"

11 ])

12

13 # convert g to m/s^2

14 df["x-axis (m/s^2)"] = df["x-axis (g)"] * constants.g

15 df["y-axis (m/s^2)"] = df["y-axis (g)"] * constants.g

16 df["z-axis (m/s^2)"] = df["z-axis (g)"] * constants.g

17 # convert deg/s to rad/s

18 df["x-axis (rad/s)"] = np.deg2rad(df["x-axis (deg/s)"])

19 df["y-axis (rad/s)"] = np.deg2rad(df["y-axis (deg/s)"])

20 df["z-axis (rad/s)"] = np.deg2rad(df["z-axis (deg/s)"])

21

22 # time between two sample points

23 dt = 1 / SAMPLE_RATE

24 # 2nd order 10 Hz low-pass

25 [b, a] = scipy.signal.butter(

26 2,

27 10 / (SAMPLE_RATE / 2),

28 "low"

29 )

30 # timestamp

31 uptime["epoc (ms)"] = df["epoc (ms)"]

32 filtered["epoc (ms)"] = df["epoc (ms)"]

33

34 # apply filter to each axis

35 filtered["x-axis (m/s^2)"] = scipy.signal.lfilter(b, a, df["x-axis (m/s^2)"])

36 filtered["y-axis (m/s^2)"] = scipy.signal.lfilter(b, a, df["y-axis (m/s^2)"])

37 filtered["z-axis (m/s^2)"] = scipy.signal.lfilter(b, a, df["z-axis (m/s^2)"])

38 filtered["x-axis (rad/s)"] = scipy.signal.lfilter(b, a, df["x-axis (rad/s)"])

39 filtered["y-axis (rad/s)"] = scipy.signal.lfilter(b, a, df["y-axis (rad/s)"])

40 filtered["z-axis (rad/s)"] = scipy.signal.lfilter(b, a, df["z-axis (rad/s)"])

41

42 # trigonometric estimations of roll and pitch using raw accerometer data

43 filtered["acce-phi-hat"] = np.arctan2(

44 filtered["y-axis (m/s^2)"],

45 np.sqrt(filtered["x-axis (m/s^2)"] ** 2 + filtered["z-axis (m/s^2)"] ** 2),

46 )

47 filtered["acce-theta-hat"] = np.arctan2(

48 -filtered["x-axis (m/s^2)"],

49 np.sqrt(filtered["y-axis (m/s^2)"] ** 2 + filtered["z-axis (m/s^2)"] ** 2),

50 )

51

52 # state-space form of kalman filter

53 a = np.array([
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54 [1, -dt, 0, 0],

55 [0, 1, 0, 0],

56 [0, 0, 1, -dt],

57 [0, 0, 0, 1],

58 ])

59 b = np.array([

60 [dt, 0, 0, 0],

61 [0, 0, dt, 0],

62 ]).T

63 c = np.array([

64 [1, 0, 0, 0],

65 [0, 0, 1, 0],

66 ])

67

68 # initial error covariance matrix (4 x 4 identity matrix init with 1)

69 # large values = unsure if initial state is correct

70 # small values = confident that initial guess is correct

71 p = np.eye(4) * 1

72

73 # proces covariance matrix (4 x 4 identity matrix init with 0.01)

74 # large values = model is inaccurate

75 # small values = model is accurate

76 q = np.eye(4) * 0.01

77

78 # measurement noise covariance matrix (2 x 2 identity matrix init with 10)

79 # large values = greater sensor noise

80 # small values = minimal sensor noise

81 r = np.eye(2) * 10

82

83 # initial value estimate (4 x 1 matrix)

84 state_estimate = np.array([

85 constants.pi / 2,

86 0,

87 0,

88 0,

89 ]).T

90

91 # vector initialization

92 phi = np.zeros(len(filtered))

93 bias_phi = np.zeros(len(filtered))

94 theta = np.zeros(len(filtered))

95 bias_theta = np.zeros(len(filtered))

96

97 # kalman filter

98 for i in range(len(filtered)):

99 gryo_x = filtered["x-axis (rad/s)"][i]

100 gryo_y = filtered["y-axis (rad/s)"][i]

101 gryo_z = filtered["z-axis (rad/s)"][i]

102

103 phi_hat = phi[i - 1]

104 theta_hat = theta[i - 1]

105

106 # generate input vector

107 phi_dot = gryo_x + \

108 np.sin(phi_hat) * np.tan(theta_hat) * gryo_y + \

109 np.cos(phi_hat) * np.tan(theta_hat) * gryo_z

110 theta_dot = np.cos(phi_hat) * gryo_y - \

111 np.sin(phi_hat) * gryo_z

112

113 # predict state

114 state_estimate = a @ state_estimate + \

115 b @ np.array([

116 phi_dot,

117 theta_dot,

118 ]).T

119

120 # predict error covariance
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121 p = a @ p @ a.T + q

122

123 # update

124 measurement = np.array([

125 filtered["acce-phi-hat"][i],

126 filtered["acce-theta-hat"][i],

127 ]).T

128

129 y_tilde = measurement - c @ state_estimate

130

131 s = r + c @ p @ c.T

132 k = p @ c.T @ np.linalg.inv(s)

133

134 state_estimate = state_estimate + k @ y_tilde

135

136 p = (np.eye(4) - k @ c) @ p

137

138 phi[i] = state_estimate[0]

139 bias_phi[i] = state_estimate[1]

140 theta[i] = state_estimate[2]

141 bias_theta[i] = state_estimate[3]

142

143 # convert phi and theta to a single angle output using quaternions

144 roll = constants.pi / 2 - phi

145 pitch = theta

146

147 qr = np.cos(roll / 2) * np.cos(pitch / 2)

148 qi = np.sin(roll / 2) * np.cos(pitch / 2)

149 qj = np.cos(roll / 2) * np.sin(pitch / 2)

150 qk = np.sin(roll / 2) * np.sin(pitch / 2)

151

152 # angle in radians

153 angle = 2 * np.arctan2(

154 np.sqrt(qi ** 2 + qj ** 2 + qk ** 2),

155 qr,

156 )

157 # angle in degrees

158 angle = np.degrees(angle)

159

160 # insert angle into dataframe

161 uptime["angle (deg)"] = angle

162

163 # upright

164 upright = np.zeros(len(uptime))

165 for i in range(len(angle)):

166 if CRITICAL_ANGLE > angle[i]:

167 upright[i] = 1

168

169 upright_percentage = np.sum(upright) / len(upright) * 100

170 uptime["upright (0/1)"] = upright

171

172 end_time = datetime.now()

173 print(

174 f"{filename}:\n"

175 f"Upright percentage: {upright_percentage}%\n"

176 f"Execution: {end_time - start_time}"

177 )

178

179 return uptime
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B Steps/Day Algorithm (Python)

Following Python snippet is derived from the original step counter algorithm written in MATLAB by

McKenzie Hoggan, it is Incorporated into MetaProcessor then extracted from the code base with extra

comments, please refer to MetaProcessor’s GitHub repository to see the usage in context.

1 def read(filename: str) -> pd.DataFrame:

2 df = pd.read_csv(filename, engine="pyarrow")

3 if df.isnull().sum().sum() == 0:

4 df = df.astype({

5 "epoc (ms)": int,

6 "x-axis (g)": float,

7 "y-axis (g)": float,

8 "z-axis (g)": float,

9 "x-axis (deg/s)": float,

10 "y-axis (deg/s)": float,

11 "z-axis (deg/s)": float,

12 })

13 else:

14 df = df.fillna(method="ffill").fillna(method="bfill")

15 if df.isnull().sum().sum() != 0:

16 raise ValueError(f"cannot fill NaN values in {filename}")

17 return df

18

19

20 def steps_per_day(filename: str) -> int:

21 start_time = datetime.now()

22 df = read(filename)

23

24 df = 9.81 * df.iloc[:, 1:4]

25 logic = np.ones(len(df))

26 steps = np.zeros(len(df))

27 l = 1

28

29 # x-axis

30 acc = df.iloc[:, 0]

31 # y-axis

32 # acc = rawAcc.iloc[:, 1]

33 w = 10

34 steps = 0

35

36 n = range(0, len(df))

37 logic = logic[n]

38

39 # compute local variance

40 var = np.convolve(acc[n], np.ones((w,))/w, mode='valid')

41 pks = np.array([])

42

43 pks = np.array([])

44 for i in range(len(var)):

45 if (var[i] > 0.1):

46 pks = np.append(pks, var[i])

47

48 if (len(pks) != 0):

49 thresh = min(pks)

50 D1 = thresh*2

51 D2 = D1/2

52 B = np.zeros(len(var))

53
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54 for i in range(len(var)):

55 if (var[i] >= thresh):

56 B[i] = D1

57 else:

58 B[i] = D2

59

60 F = np.zeros(len(B))

61

62 F[0] = 1

63

64 for i in range(1, len(B)):

65 if (B[i-1] > B[i]):

66 F[i] = -1

67 elif (B[i-1] < B[i]):

68 F[i] = 1

69

70 # count up the steps

71 if (F[0] == 1 and logic[i] == 1):

72 steps = 1

73

74 for i in range(1, len(F)):

75 if (F[i] == 1):

76 steps = steps + 1

77 elif (F[i] == -1 and F[i-1] == -1 and logic[i] == 1):

78 steps = steps + 1

79

80 end_time = datetime.now()

81 print(

82 f"{filename}:\n"

83 f"Steps: {steps}\n"

84 f"Execution: {end_time - start_time}"

85 )

86

87 return steps
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C T-Test Results for Survey Data Collected

from EndoPAT Study

The figures presented in this appendix section were produced using standardized survey data collected

from study participants during their visits to The Bateman Horne Center, as well as data collected through

online forms. While we did not formulate specific hypotheses for each of the features depicted in these

figures, we have the necessary tools and data to generate them. As such, we have included these figures for

future reference.

Included features are: Augmentation Index (AI), Augmentation Index Normalized to HR 75 bpm (AI75),

Baseline Heart Rate (bpm) (BLHR), Natural Base Log of Reactive Hyperemia Index (LnRHI), Reactive

Hyperemia Index (RHI), and Hours of Upright Activity (HUA).

We would like to acknowledge the invaluable contribution of Dr. Suzanne Vernon, Research Director at

The Bateman Horne Center, and the staff members at the center for providing us with this survey data used

in this study. Their efforts in collecting and compiling this data have been instrumental in enabling us to

conduct our research and draw meaningful conclusions.
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Figure C.1: Grouped t-test performed at 95% confidence level for Augmentation Index, ME/CFS vs. Long
COVID vs. Control, 95% confidence interval.

Figure C.2: Grouped t-test performed at 95% confidence level for Augmentation Index Normalized to HR
75 bpm, ME/CFS vs. Long COVID vs. Control. In the legend, “Mean” is mean plus or minus a standard
error.
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Figure C.3: Grouped t-test performed at 95% confidence level for Baseline Heart Rate (bpm), ME/CFS vs.
Long COVID vs. Control. In the legend, “Mean” is mean plus or minus a standard error.

Figure C.4: Grouped t-test performed at 95% confidence level for Natural Base Log of Reactive Hyperemia
Index, ME/CFS vs. Long COVID vs. Control. In the legend, “Mean” is mean plus or minus a standard
error.
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Figure C.5: Grouped t-test performed at 95% confidence level for Reactive Hyperemia Index, ME/CFS vs.
Long COVID vs. Control. In the legend, “Mean” is mean plus or minus a standard error.
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